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Racial isolation, R, for a group (G) (e.g., blacks) versus others, for units A (e.g., schools) 
within a larger unit B (e.g., a state), should be computed as follows. 
 
Definition:                                            
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where NA, NB  are the numbers of students in unit A, in unit B; and 
p

B

AG and pBG are the proportions of group members in units A and B.  
 

That is, R is 1 minus the exposure of members of group G (e.g., blacks) to others divided 
by the exposure of all to others.  R is zero if pAG is the same for all A (complete 
desegregation), and R is one if pAG is one or zero for all A (complete segregation).  
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That is, racial isolation is the ratio of the variance among school (unit A) percentages of 
group G enrollment to the overall state (unit B) variance in group G enrollment.  
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where S refers to school, L to LEA, and T to state. 
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That is, racial isolation between schools in a state can be partitioned into (1) racial 
isolation between districts in the state, plus (2) a weighted average of racial isolation 
within districts.  The “weight” for the within-district isolation in district L is given by the 
coefficient of RG:SL.  This equation can be reversed to obtain an estimate of the average 
RG:SL  
  
 Theorem 3:                                           )1/()( :::: LTGLTGSTGSLG RRRR −−=  
 
In other words, using this equation is equivalent to weighting each RG:SL  by NL pLG (1-pLG) 
in computing the average. 



Proof of theorem 1: 
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 , and if we let  vAG = pAG - pBG , 
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Proof of Theorem 2: 
 

T
LS

TGLSGLSTSp NppN
G ∑ −= 22

/, )(σ  T
LS

TGLGLGLSGLS NppppN∑ −+−= 2)(  

 

             T
LS L

TGLGLLGLSGLS NppNppN ⎟
⎠

⎞
⎜
⎝

⎛
−+−= ∑ ∑ 22 )()(  

 

              T
L

TGLGL
L

L
S

LGLSGLSTL NppNNppNNN ∑∑ ∑ −+⎟
⎠

⎞
⎜
⎝

⎛
−= 22 )()()/(  

 
                2

/,
2

/,)/( TLp
L

LSpTL GG
NN σσ += ∑

 
Proof of Theorem 3: 
 

We can rewrite SLG
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Rearranging terms, we have  )1/()( :::: LTGLTGSTGSLG RRRR −−= .



Generalization to K groups, G1, ..., Gk. 
 

 The total isolation among a set of subpopulations is one minus the sum of 
exposure rates for each pair of groups, for all schools in a district, divided by the sum of 
exposure rates for the district. 
 

Definition:  
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where the first subscript T refers to “total” over all groups. 
 
 

Lemma 1.    for any unit A or B. ∑∑
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Lemma 1 allows us to write total isolation in terms either of a weighted sum of isolation 
between all pairs of groups or of a weighted sum of isolation of each group from the 
collection of all others. 

Using Lemma 1,  
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We can additively partition the total multi-group isolation RT:AB  into a weighted 

average of the isolation RGiGj:AB for the individual pairs of groupsB   if we define RGiGj:ABB  
for each pair of groups Gi and Gj included in the total, such that isolation between two 
groups is measured taking into account the other groups (in a school with equal numbers 
of each of K groups, the exposure of any group to any other would be 1/K).  In that case, 
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or equivalently, we can define the total isolation in terms of the weighted average of the 
isolation of each group from “all others.” 
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 These results allow us to partition total multi-group isolation between schools in a 
state into total multi-group isolation between districts in the state and multi-group 
isolation between schools in each district: 
 
Theorem 4:  
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Proof of theorem 4: 
 
By Lemma 1, the two expressions for RT:ST are equivalent. 
 
Insert the definitions for RT:LT and RT:SL in the equation: 
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Canceling the equal terms yields: 
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Note that for two groups, this is identical to the previous result. 
 
Putting this together, we have a decomposition of total isolation by level and subgroup: 
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Next step is general formula for n levels (e.g., schools within districts within states within 
regions within the country). 
 
The data are ngclsr, the enrollment of group g in campus c in district l in state s in region r. 


