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Racial isolation, R, for a group (G) (e.g., blacks) versus others, for units A (e.g., schools)
within a larger unit B (e.g., a state), should be computed as follows.
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where Np, Ng are the numbers of students in unit A, in unit B; and
Pac and psg are the proportions of group members in units A and B.

That is, R is 1 minus the exposure of members of group G (e.g., blacks) to others divided
by the exposure of all to others. R is zero if pag is the same for all A (complete

desegregation), and R is one if pag isone or zero for all A (complete segregation).
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That is, racial isolation is the ratio of the variance among school (unit A) percentages of
group G enrollment to the overall state (unit B) variance in group G enrollment.
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where S refers to school, L to LEA, and T to state.
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That is, racial isolation between schools in a state can be partitioned into (1) racial
isolation between districts in the state, plus (2) a weighted average of racial isolation
within districts. The “weight” for the within-district isolation in district L is given by the
coefficient of Rg.s.. This equation can be reversed to obtain an estimate of the average
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In other words, using this equation is equivalent to weighting each Rg:s. by N, pis (1-pLs)
in computing the average.



Proof of theorem 1:
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Proof of Theorem 2:
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Proof of Theorem 3:
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Rearranging terms, we have R.g = (Rgsr — Rour ) /(L= Rayr)-



Generalization to K groups, Gy, ..., Gk.

The total isolation among a set of subpopulations is one minus the sum of
exposure rates for each pair of groups, for all schools in a district, divided by the sum of
exposure rates for the district.
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where the first subscript T refers to “total” over all groups.
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Lemma 1 allows us to write total isolation in terms either of a weighted sum of isolation
between all pairs of groups or of a weighted sum of isolation of each group from the
collection of all others.
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Using Lemma l, R;,; =1-

We can additively partition the total multi-group isolation Rr.ag into a weighted
average of the isolation Rgig;j.ag for the individual pairs of groups if we define Rgigj:as
for each pair of groups G; and G; included in the total, such that isolation between two
groups is measured taking into account the other groups (in a school with equal numbers
of each of K groups, the exposure of any group to any other would be 1/K). In that case,
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or equivalently, we can define the total isolation in terms of the weighted average of the
isolation of each group from “all others.”
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These results allow us to partition total multi-group isolation between schools in a
state into total multi-group isolation between districts in the state and multi-group
isolation between schools in each district:
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Proof of theorem 4:
By Lemma 1, the two expressions for Rr.st are equivalent.

Insert the definitions for Rt and Rr.g. in the equation:
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Canceling the equal terms yields:
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Note that for two groups, this is identical to the previous result.

Putting this together, we have a decomposition of total isolation by level and subgroup:
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Next step is general formula for n levels (e.g., schools within districts within states within
regions within the country).

The data are ngesr, the enrollment of group g in campus c in district | in state s in region r.



